基本信息
张献龙,男,永利集团官网入口教授、博士生导师,国家教学名师,兼任作物遗传改良国家重点实验室副主任、中国棉花学会副理事长。1980年考入华中农学院,1990年毕业于永利集团官网入口,获农学博士学位并留校任教。长期从事棉花生物技术及育种应用研究,在国际上率先实现从野生棉体细胞及原生质体再生植株,实现体细胞融合并再生植株;建立了一套高通量的棉花转基因系统;并将CRISPR-Cas9技术在棉花中成功应用;鉴定了一系列抗病、耐高温、及纤维发育相关的重要功能基因;完成了海岛棉基因组测序,揭示了棉花驯化历程,为全基因组育种奠定基础。在Nature Genetics、Nature Communications、Nature Plants、Nucleic Acids Research、Plant Cell、Plant Physiology等学术期刊发表研究论文300多篇,主编/参编教材或专著8部;培育出“华杂棉1号”、“华杂棉2号”、“华惠103”、“华杂棉H318”、“华杂棉4号”和“华棉3109” 、华棉3097、华杂棉H116、华杂棉H922等棉花新品种。相关科研成果获国家科技进步二等奖1项,湖北省科技进步一等奖2项,湖北省技术发明奖二等奖1项。任作物学报副主编、棉花学报副主编、Plant Biotechnology Journal等多个国内外学术期刊编委。长期坚持科研与教学融合,潜心人才培养,指导的博士学位论文获2008年“全国优秀百篇博士学位论文”,另有两篇博士论文获“全国优秀百篇博士论文提名”,作为主要完成人之一获国家教学成果奖一等奖1项,湖北省教学成果奖特等奖1项,获“国家教学名师”奖和“全国优秀教师”等多项荣誉称号。Elsevier国际出版集团2015-2019年发布的统计结果,在“农业与生物科学”领域,张献龙都在高被引学者之列,说明其科研成果受到本领域学者关注。
1. 教育背景
1980.09-1984.06 永利集团官网入口,作物遗传育种,获学士学位
1984.09-1987.06 永利集团官网入口,作物遗传育种 获硕士学位
1987.09-1990.06 永利集团官网入口,作物遗传育种 获博士学位
2. 工作经历
1990.07-1992.12 永利集团官网入口,讲师
1993.01-1996.12 永利集团官网入口,副教授
1997.01-2002.05 永利集团官网入口,教授
2002.06-2008.02 永利集团官网入口,植物科技学院经理,教授
2008.03-2018.08 永利集团官网入口,副董事长,教授
2018.09-至今 永利集团官网入口,教授
1993.10-1994.10 加拿大曼尼托巴大学农学院植物科学技术系访问学者
1998.11-1999.04 美国阿拉巴马农工大学植物科学系访问学者
2001.11-2002.02 英国杜伦大学生物系访问学者
3. 学术兼职
2012.07-至今 中国农学会 理事
2002.07-至今 中国农学会棉花分会副理事长
2014.06-至今 中国作物学会常务理事
2008.10-至今 中国遗传学会理事
2004.09-至今 湖北省棉麻学会理事长
2002.01-至今 作物遗传改良国家重点实验室副主
国家自然科学基金重点项目:棉花优质纤维基因关联位点的高通量验证及基因调控网络构建,2019-2023
国家自然科学基金联合基金重点项目:棉花抗枯黄萎病关键遗传位点解析与基因功能鉴定, 2018-2021
国家棉花产业技术体系:多抗材料创新岗位科学家, 2016-2020
转基因重大专项子课题:长江中游棉区高产高效转基因棉花新品种培育,2016-2020
授权专利
1) 张献龙,聂以春,陈妹幼,吴家和:一种快速棉花转基因的方法。专利授权号:ZL01131087.1
2) 张献龙,林忠旭,聂以春,贺道华:一种棉花分子遗传连锁作图的方法。专利授权号:ZL03119012.X
3) 张献龙,朱龙付,涂礼莉,聂以春,郭小平,曾范昌,刘迪秋:从棉花组织中抽提RNA的方法。专利授权号:ZL200410060637.6
4) 张献龙,金双侠,聂以春,郭小平,朱华国:超声波辅助农杆菌转化棉花胚芽的方法。专利授权号:ZL200710063650.0
5) 张献龙,林忠旭,刘传祥:利用EST-SSR标记-棉花纤维转录。专利授权号:ZL201010196031.0
6) 涂礼莉,李阳,张献龙,朱龙付,邓锋林:两个棉花纤维伸长期优势表达的启动子及应用。专利授权号: ZL201010582387.8
7) 张献龙,谭家福,涂礼莉,朱龙付,邓锋林:利用棉花基因GbF3H改变花瓣颜色,专利授权号: ZL201010582448.0
8) 张献龙,邓锋林,涂礼莉,朱龙付,谭家福:两个棉花纤维发育起始优势表达的强启动子及其应用。专利授权号:ZL201010582335.0
9) 张献龙,王彦芹,金双侠,朱龙付;聂以春:利用花花柴KcNHX1基因培育耐高温拟南芥的方法。专利授权号:ZL201310160491.1
10) 张献龙,杨细燕,周婷,王丽晨:GhTZF1在增强植物抗旱性及延缓干旱诱导的衰老中的应用。专利授权号:ZL201310365814.0
11) 朱龙付,高巍,龙璐,张献龙,聂以春,袁道军:棉花硬脂酰去饱和化酶GbSSI2基因及应用。专利授权号:ZL201310019959.5
12) 张献龙,朱龙付,孙龙清. 一种棉花细胞色素P450基因及应用. 专利授权号:ZL 201210084887.8
13) 朱龙付,张献龙,高巍,龙璐. 棉花同源结构域转录因子基因GbHDTF1及应用. 专利授权号:ZL 201310345168.1
14) 张献龙,朱龙付,闵玲,胡琴. 介导棉花广谱抗性的棉花Lac1基因及应用. 专利授权号:ZL 201310109621.9
15) 张献龙,李阳,涂礼莉:袁道军:“棉花细胞壁伸展蛋白基因GbEXPATR 及应用”,专利授权号:ZL201410073300.2
16) 张献龙,韩杰,谭家福,涂礼莉:“一种棉花Phytosulfokine前体基因GhPSKP及制备方法和应用”,专利授权号:ZL 201210260715.1
17) 涂礼莉,胡海燕,谭家福,张献龙:“一种纤维伸长期优势表达的启动子及制备方法和应用”,专利授权号:ZL 201210288775.4
获得科技奖励情况
1) 2013年,棉花种质创新及强优势杂交棉新品种选育与应用,国家科技进步奖二等奖(排名1)
2) 2012年,强优势多抗杂交棉新品种‘华杂棉H318’的选育与应用,湖北省科技进步奖一等奖(排名1)
3) 2012年,棉花体细胞离体遗传操作技术与控制理论,高等学校科学研究优秀成果奖(科学技术)自然科学二等奖(排名1)
4) 2008年,棉花分子育种体系建立与应用,湖北省科技发明奖二等奖(排名1)
5) 2004年,棉花细胞工程体系构建及其应用基础研究,湖北省科技进步奖一等奖(排名1)
获得的荣誉称号
1) 2017获得全国创新争先奖状
2) 2016年获得全国优秀科技工作者称号
3) 2015年获湖北省五一劳动奖章
4) 2014年获湖北十佳师德标兵称号
5) 2013年入选首批国家百千万工程领军人才
6) 2011年“棉花原生质体不对称融合研究及原生质体细胞壁重建相关基因的表达谱分析” 获全国优秀百篇博士论文提名奖
7) 2010年获国务院政府特贴
8) 2010年“棉花体细胞胚发生与合子胚发育相关基因的鉴定、克隆与功能分析”获年全国优秀百篇博士论文提名奖
9) 2008年“棉花原生质体培养和原生质体对称融合研究” 获全国优秀百篇博士论文奖
10) 2008年获湖北省第四届优秀科技工作者称号
11) 2007年入选新世纪百千万人才工程国家级人选
12) 2006年获国家教学名师奖
13) 2005年获湖北省教学成果特等奖
14) 2005年获国家教学成果一等奖
15) 2005年获第四届大北农科技促进奖
16) 2005年入选湖北省新世纪人才工程
17) 2004年获湖北省政府专项津贴
18) 2004年入选教育部新世纪人才支持计划
19) 2004年获全国优秀教师称号
20) 2004年获武汉市新长征突击手称号
21) 2001年获湖北省杰出青年科学基金支持
22) 2000年入选教育部骨干教师支持计划
23) 1993年获教育部霍英东青年教师基金
代表性论文
(一)棉花进化及基因组研究
1) Wang M, Tu L, Yuan D, Zhu, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen LL, Zheng H, Lindsey K*, Lin Z*, Udall JA*, Zhang X*. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019 Feb;51(2):224-229
2) Wang PC, Zhang J, Sun L, Ma YZ, Xu J, Liang SJ, Deng JW, Tan JF, Zhang Q, Tu LL, Daniell Henry, Jin SX*, Zhang XL*. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018, 16(1):137-150
3) Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K* , Zhang X*. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nature Genetics, 2017, 49(4): 579-587
4) Wang M, Wang P, Tu L, Zhu S, Zhang L, Li Z, Zhang Q, Yuan D and Zhang X*. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation. Nucleic Acids Res, 2016, 44(9):4067-4079
5) Wang M, Yuan D, Tu L, Gao W, He Y, Hu H, Wang P, Liu N, Lindsey K, Zhang X*. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol, 2015, 207(4):1181-1197
6) Yuan D, Tang Z, Wang M, Gao W, Tu L, Jin X, Chen L, He Y, Zhang L, Zhu L, Li Y, Liang Q, Lin Z, Yang X, Liu N, Jin S, Lei Y, Ding Y, Li G, Ruan X, Ruan Y*, Zhang X*. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep, 2015, 5: 17662, doi: 10.1038/srep17662
(二)棉花纤维发育研究
1) Wang M, Wang P, Liang F, Ye Z, Li J, Shen C, Pei L, Wang F, Hu J, Tu L, Lindsey K, He D*, Zhang X*. A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation, New Phytol, 2018, 217(1):163-178
2) Hu H, Wang M, Ding Y, Zhu S, Zhao G, Tu L*, Zhang X. Transcriptomic repertoires depict the initiation of lint and fuzz fibers in cotton (Gossypium hirsutum L.), Plant Biotechnol J, 2018, 16(5):1002-1012
3) Wang M, Wang P, Lin M*, Ye Z, Li G, Tu L, Shen C, Li J, Yang Q*, Zhang X*. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton, Nat Plants, 2018, 4(2):90-97
4) Hu H, He X, Tu L, Zhu L, Zhu S, Ge Z, Zhang X*. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J, 2016, 88(6):921-935
5) Guo K, Du X, Tu L, Tang W, Wang P, Wang M, Liu Z, Zhang X. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). J Exp Bot, 2016, 67(11):3289-3301
6) Li Y, Tu L, Pettolino FA, Ji S, Hao J, Yuan D, Deng F, Tan J, Hu H, Wang Q, Llewellyn DJ, Zhang X. GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. Plant Biotechnol J, 2016, 14(3):951-963
7) Liu N, Tu L, Tang W, Gao W, Lindsey K, Zhang X*. Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense. Plant J, 2014, 80(2):331-344
8) Tang W, Tu L, Yang X, Tan J, Deng F, Hao J, Guo K, Lindsey K, Zhang X*. The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol, 2014, 202(2):509-520
9) Han J, Tan J, Tu L, Zhang X. Peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre. Plant Biotechnol J, 2014, 12(7):861-871
10) Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X*. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol, 2013, 162(1):86-95
11) Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X*. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot, 2012, 63(17):6267-6281
12) Deng F, Tu L, Tan J, Li Y, Nie Y, Zhang X*. GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol, 2012, 158(2):890-904
(三)棉花抗逆机制研究
1) Ma Y, Min L, Wang M, Wang C, Zhao Y, Li Y, Fang Q, Wu Y, Xie S, Ding Y, Su X, Hu Q, Zhang Q, Li X, Zhang X. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell. 2018, 30(7):1387-1403.
2) Hu Q, Min L, Yang X, Jin S, Zhang L, Li Y, Ma Y, Qi X, Li D, Liu H, Lindsey K, Zhu L, Zhang X. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via DAMP-triggered immunity. Plant Physiol, 2018, 176(2):1808-1823
3) Zhang L, Wang M, Li N, Wang H, Qiu P, Pei L, Xu Z, Wang T, Gao E, Liu J, Liu S, Hu Q, Miao Y, Lindsey K, Tu L, Zhu L, Zhang X*. Long non-coding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton. Plant Biotechnol J, 2018, DOI: 10.1111/pbi.12861
4) Wu Y, Min L, Wu Z, Yang L, Zhu L, Yang X, Yuan D, Guo X, Zhang X*. Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton. Sci Rep, 2015, 5:9608. doi: 10.1038/srep09608
5) Xu L, Zhang W, He X, Liu M, Zhang K, Shaban M, Sun L, Zhu J, Luo Y, Yuan D, Zhang X, Zhu L. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies. J Exp Bot, 2014, 65(22):6679-6692
6) Sun L, Zhu L, Xu L, Yuan D, Min L, Zhang X*. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nat Commun, 2014, 5:5372. doi: 10.1038/ncomms6372
7) Li C, He X, Luo X, Xu L, Liu L, Min L, Jin L, Zhu L, Zhang X. GbWRKY1 mediates plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JAZ1 expression. Plant Physiol, 2014, 166(4):2179-2194
8) Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X*. Sugar and auxin signaling pathways respond to high temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol, 2014, 164(3):1293-1308
9) Gao W, Long L*, Zhu L, Xu L, Gao W, Sun L, Liu L, Zhang X*. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that Gossypol, Brassinosteroids and Jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12(12):3690-3703
10) Min L, Zhu L, Tu L, Deng F, Yuan D, Zhang X*.Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J, 2013, 75(5):823-835
11) Jin S, Zhang X, Daniell H. Pinelliaternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J, 2012, 10(3):313-327
12) Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L and Zhang X*. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot, 2011, 62(15):5607-5621
(四)棉花体细胞胚发育机制研究
1) Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, Lindsey K, Zhang X*. ROS homeostasis regulates somatic embryogenesis via the regulation of auxin signaling in cotton. Mol Cell Proteomics, 2016, 15(6):2108-2124
2) Min L, Hu Q, Li Y, Xu J, Ma Y, Zhu L, Yang X, Zhang X*. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 network regulates somatic embryogenesis by regulating auxin homeostasis. Plant Physiol, 2015, 169(4):2805-2821
3) Jin F, Hu L, Yuan D, Xu J, Gao W, He L, Yang X, Zhang X*. Comparative transcriptome analysis between somatic embryos and zygotic embryos in cotton: evidence for stress response functions in somatic embryo development. Plant Biotechol J, 2013, 12(2):161-173
4) Yang X, Wang L, Yuan D, Lindsey K and Zhang X*. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot, 2013, 64(6):1521-1536
5) Hu L, Yang X, Yuan D, Zeng F, Zhang X*. GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J, 2011, 9: 1038-1048
6) Yang X, Zhang X*. Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci, 2010, 29(1):36-57
7) Yang X, Tu L, Zhu L, Fu L, Min L, Zhang X*. Expression profile analysis of genes involved in cell wall regeneration during protoplast culture in cotton by suppression subtractive hybridization and macroarray. J Exp Bot, 2008, 59(13):3661-3674
8) Sun Y, Zhang X*, Nie Y, Guo X, Jin S, Liang S. Production and characterization of somatic hybrids between upland cotton (Gossypium hirsutum) and wild cotton (G. klotzschianum Anderss) via electrofusion. Theor Appl Genet, 2004, 109(3):472-479
主编参编著作
1) Genome Sequencing, In: Cotton, 2nd edition. 2015, edited by David D. Fang and Richard G. Percy. American Society of Agronomy, Crop Science Society of America, and Soil Science of America. p. 289-302
2) 《植物生物技术》第二版主编,2012,科学出版社
3) Developmental and molecular aspects of somatic embryogenesis (nonzygotic embryogenesis), In: Plant Tissue Culture, Development, and Biotechnology, 2011, Robert N. Trigiano and Dennis J. Gray Eds., CRC Press, p. 307-325
4) Cotton Biotechnology: Challenge the Future for Cotton Improvement, In: Biotechnology in Crop Improvement, 2008, GP Rao (ed.), Studium Press, LLC, Houstan, Texas, USA. p. 241-301
5) 《遗传学》副主编,2007,科学出版社
6) 《湖北棉花》参编,2004,中国农业出版社
7) 《作物育种学总论》副主编,2003,农业出版社
8) 《中国棉花遗传育种学》参编,2003,山东科学技术出版社
9) 《植物细胞组织培养》参编,2002,中国农业大学出版社
培育审定的棉花品种
1) “华杂棉1号”( 鄂审棉2005002号)
2) “华杂棉2号” ( 豫审棉2005009号)
3) “华惠103”(赣审棉2006008号)(与惠民种业合作)
4) “华杂棉H318”(国审棉2009018号)
5) “华杂棉4号”(赣审棉2009001号)
6) “华棉3109”(鄂审棉2014006号)
7) 华棉3097 (鄂审棉2017005)
8) 华杂棉H116(赣审棉20180001)
9) 华杂棉H922(赣审棉20180002)
其它论文目录
论文列表(中文):
1. 刘宏伟, 李南南, 苗玉焕, 柳仕明, 聂以春, 朱龙付, 张献龙. 利用FBP:iaaM改良华杂棉H318产量与纤维品质研究. 石河子大学学报, 2016, 2:133-140.
2. 张云超, 杨细燕, 何良荣, 李乐斌, 周婷, 金芳燕, 张献龙. 鲁棉6号体细胞胚胎发生过程及植株再生. 永利集团官网入口学报, 2014, 02: 22-27.
3. 付小勤, 原保忠, 张献龙, 聂以春, 刘燕, 柯昌煌, 叶圣池. 钾肥分期施用对棉花产量及构成因素影响, 中国农学通报, 2014, 18: 95-103.
4. 刘琳琳, 张文文, 周易, 苗玉焕, 许莲, 刘敏, 张坤, 张献龙, 朱龙付. 棉花与番茄抗棉花黄萎病不依赖于Ve1, 中国科学: 生命科学, 2014, 08: 803-814.
5. 涂礼莉, 谭家福, 郭凯, 李中华, 张献龙*. 类黄酮代谢途径与棉花纤维发育, 中国科学:生命科学, 2014, 08: 758-765.
6. 付小勤, 原保忠, 刘燕, 张献龙, 聂以春. 钾肥施用量和施用方式对棉花生长及产量和品质的影响, 农学学报, 2013, 02: 6-11.
7. 杨国正, 王德鹏, 聂以春, 张献龙. 钾肥用量对棉花生物量和产量的影响(英文), 作物学报, 2013, 05: 905-911.
8. 惠慧, 郭小平, 朱龙付, 张献龙. 落叶型棉花黄萎病菌的致病力分化, 植物保护学报, 2013, 05: 445-449.
9. 朱华国, 张献龙, 金双侠, 刘冠泽. 两种常用激素组合下棉花体细胞胚胎发生过程的组织学观察, 棉花学报, 2012, 02: 159-166.
10. 白静, 聂以春, 林忠旭, 郭小平, 张献龙, 王斌, 刘传祥. 棉花杂交种SSR核心引物的筛选与评价, 棉花学报, 2012, 03: 207-214.
11. 徐理, 朱龙付, 张献龙*. 棉花抗黄萎病机制研究进展, 作物学报, 2012, 09: 1553-1560.
12. 刘燕, 原保忠, 张献龙, 周欢, 彭龙. 整枝与化控对棉花产量和品质的影响, 中国棉花, 2012, 11: 10-12.
13. 徐泽俊, 聂以春, 张献龙, 郭小平, 吴家和.转双价抗虫基因棉花的主要农艺性状的遗传变异, 植物遗传资源学报, 2011, 01: 125-130.
14. 杨国正, 张献龙, 黎青, 段银庭, 张羽, 刘任华, 刘道红, 曾武峰. 华杂棉H318极产探索及其关键配套栽培技术. 中国棉花, 2011, 01: 23-24.
15. 张献龙*. 湖北省棉花育种“十二五”研究构思, 中国棉花, 2011, 03: 5-7.
16. 彭龙, 原保忠, 周欢, 崔颖, 张献龙. 钾对棉花生长发育生理特性以及产量品质的影响研究, 中国农学通报, 2011, 12: 227-231.
17. 王德鹏, 祝珍珍, 陈求柱, 卢怀玉, 李召虎, 杨国正, 张献龙. 华杂棉H318 F1高产栽培技术, 湖北农业科学, 2011, 10: 1961-1963.
18. 聂以春, 张献龙, 郭小平. 转基因抗虫杂交棉-华杂棉4号, 江西棉花, 2010, 01: 49-50.
19. 聂以春, 张献龙, 郭小平. 高产抗虫杂交棉-华杂棉H318, 中国棉花, 2010, 02: 26.
20. 李雪林, 刘冠泽, 聂以春, 郭小平, 张献龙*. SNAC1基因作为筛选标记基因用于棉花的遗传转化, 棉花学报, 2010, 01: 36-41.
21. 朱再清, 张献龙. 我国转基因抗虫棉推广与生产优势区域变化实证分析, 永利集团官网入口学报(社会科学版), 2010, 02: 12-17.
22. 宋俊乔, 孙培均, 张霞, 张献龙, 聂以春, 郭小平, 朱龙付. 棉仁高油分材料筛选及其脂肪酸发育分析, 棉花学报, 2010, 04: 291-296.
23. 余渝, 张艳欣, 林忠旭, 张献龙. 棉花种间BC1群体偏分离的遗传剖析(英文), 作物学报, 2010, 10: 1657-1665.
24. 曹景林, 朱龙付, 谭家福, 邓锋林, 李允静, 郝娟, 徐士成, 张献龙*. 适用于蛋白质双向电泳的棉花胚性培养物蛋白质提取技术, 棉花学报, 2009, 01: 3-9.
25. 李雪林, 林忠旭, 聂以春, 郭小平, 张献龙*. 盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析, 作物学报, 2009, 04: 588-596.
26. 王振宇, 马奇祥, 郭小平, 张献龙. 试验地点选择对棉花产量鉴别的影响, 河南农业科学, 2009, 04: 55-58.
27. 张培培, 王夏青, 余杨, 余渝, 林忠旭, 张献龙. 首批海岛棉基因组来源的微卫星标记的分离、评价和定位, 作物学报, 2009, 06: 1013-1020.
28. 付莉莉, 杨细燕, 张献龙, 王志伟, 冯常辉, 刘传祥, 江培勇, 张金龙. 棉花原生质体“供- 受体”双失活融合产生种间杂种植株及其鉴定, 科学通报, 2009, 15: 2219-2227.
29. 林忠旭, 冯常辉, 郭小平, 张献龙. 陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析, 中国农业科学, 2009, 09: 3036-3047.
30. 余渝, 王夏青, 冯常辉, 林忠旭, 张献龙*. 棉花纤维特异/优势表达基因的染色体定位, 棉花学报, 2009, 06: 435-441.
31. 曹景林, 张献龙*, 金双侠, 杨细燕, 朱华国, 付莉莉. 棉花高效体细胞胚发生及同步控制培养体系研究, 作物学报, 2008, 02: 224-231.
32. 朱华国, 涂礼莉, 金双侠, 徐理, 谭家福, 邓锋林, 张献龙*. 棉花细胞初始脱分化的基因差异表达分析, 科学通报, 2008, 20: 2483-2492.
33. 余渝, 王志伟, 冯常辉, 张艳欣, 林忠旭, 张献龙. 草棉EST-SSRs的遗传评价, 作物学报, 2008, 12: 2085-2091.
34. 王江林, 胡征国, 郭小平, 高敏, 聂以春, 张献龙. 棉花新型D8胞质雄性不育的细胞质效应研究, 棉花学报, 2008, 02: 83-87.
35. 周志林, 聂以春, 张献龙, 胡婷婷. 棉花体细胞培养中染色体的变异, 江苏农业学报, 2008, 02: 126-129.
36. 李武, 倪薇, 林忠旭, 张献龙. 海岛棉遗传多样性的SRAP标记分析, 作物学报, 2008, 05: 893- 898.
37. 林忠旭, 王锦峰, 张献龙*. 瑟伯氏棉和异常棉的陆地棉导入系的EST-SSR和gSSR分析(英文), 棉花学报, 2008, 04: 243-248.
38. 谢德意, 金双侠, 郭小平, 张献龙*. 长江和黄河流域棉区棉花品种体细胞胚胎发生和植株再生比较研究, 作物学报, 2007, 03: 394-400.
39. 谢德意, 金双侠, 郭小平, 张献龙*. 棉花胚性愈伤组织的转化及转基因胚状体的有效萌发与成苗技术研究, 作物学报, 2007, 05: 751-756.
40. 李武, 林忠旭, 张献龙*. 亚洲棉种内群体异常偏分离的分子标记检测(英文), 遗传学报, 2007, 07: 634- 640.
41. 金双侠, 韩杰, 刘小云, 刘冠泽, 王一娴, 唐文鑫, 张献龙*. SDS-蛋白酶法分离棉花cpDNA及psbA基因启动子、终止子克隆, 分子植物育种, 2007, 05: 683-689.
42. 张艳欣, 林忠旭, 李武, 涂礼莉, 聂以春, 张献龙*. 海岛棉EST- SSR引物的开发与应用研究, 科学通报, 2007, 15: 1779-1787.
43. 涂礼莉, 张献龙*, 刘迪秋, 金双侠, 曹景林, 朱龙付, 邓锋林, 谭家福, 张存斌. 棉花纤维发育和体细胞胚发生过程中实时定量PCR内对照基因的筛选, 科学通报, 2007, 20: 2379-2385.
44. 周小凤, 张碧瑶, 刘冠泽, 高巍, 余渝, 邓福军, 李保成, 孔宪辉, 张献龙, 金双侠. 新疆棉花高体细胞胚胎发生能力基因型的筛选, 分子植物育种, 2007, 06: 819-826.
45. 王国英, 郭小平, 张献龙. 4个陆地棉雄性核不育系育性稳定性观察, 永利集团官网入口学报, 2006, 04: 351-354.
46. 郭小平, 赵元明, 吴家和, 张献龙*, 聂以春. 棉花Bt转基因品系的配合力和杂种优势表现(英文), 棉花学报, 2006, 05: 304-308.
47. 贺道华, 张献龙*. 数量性状由表型变异到基因发现的研究进展, 遗传, 2006, 12: 1613- 1618.
48. 夏启中, 张明菊, 张献龙, 郭小平. 高浓度细胞分裂素诱导棉花悬浮细胞程序性死亡, 永利集团官网入口学报, 2005, 04: 334-338.
49. 王红梅, 张献龙*, 贺道华, 林忠旭, 聂以春, 李运海, 陈伟. 陆地棉对黄萎病抗性的分子标记研究, 植物病理学报, 2005, 04: 333-339.
50. 夏启中, 张献龙*, 聂以春, 郭小平, 朱龙付. 在自然衰老和诱导条件下棉花悬浮细胞程序性死亡的发生, 实验生物学报, 2005, 04: 33-38.
51. 朱龙付, 涂礼莉, 曾范昌, 刘迪秋, 张献龙*. 一种适合于cDNA文库构建的高质量棉花RNA的简单抽提法(英文), 作物学报, 2005, 12: 1657-1659.
52. 金双侠, 张献龙*, 聂以春, 郭小平, 孙玉强, 黄超, 梁绍光. 启动子诱捕在棉花基因组中的功能分析(英文), 遗传学报, 2005, 12: 1266-1274.
53. 夏启中, 张献龙*, 聂以春, 郭小平. 棉花胚性细胞悬浮系的建立及其影响因素分析, 棉花学报, 2005, 01: 12-17.
54. 聂以春, 张献龙, 杨细燕, 郭小平. 抗虫杂交棉的光合及经济性状的优势及配合力研究,永利集团官网入口学报, 2005, 01: 5-9.
55. 夏启中, 吴家和, 张献龙*. 与植物超敏反应(HR)相关的细胞编程性死亡, 永利集团官网入口学报, 2005, 01: 97-103.
56. 夏启中, 张献龙*, 聂以春, 郭小平. 撤除外源生长素诱发棉花胚性悬浮细胞程序性死亡,植物生理与分子生物学学报, 2005, 01: 78-84.
57. 朱龙付, 涂礼莉, 张献龙*, 聂以春, 郭小平, 夏启中. 黄萎病菌诱导的海岛棉抗病反应的SSH文库构建及分析, 遗传学报, 2005, 05: 528-532.
58. 吴家和, 张献龙*, 罗晓丽, 聂以春, 田颖川, 陈正华. 转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性, 遗传学报, 2004, 02: 183-188.
59. 王红梅, 张献龙*, 李运海, 聂以春. 陆地棉黄萎病抗性遗传分析, 棉花学报, 2004, 02: 84-88.
60. 曹凑贵, 张献龙, 傅廷栋. 改造传统农学专业创新人才培养模式, 中国农业教育, 2004, 01: 21-23.
61. 贺道华, 林忠旭, 张献龙*, 聂以春, 郭小平. 陆地棉纤维品质遗传基础的分子标记剖析, 棉花学报, 2004, 03: 131-136.
62. 林忠旭, 张献龙*, 聂以春. 新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析, 遗传学报, 2004, 06: 622-626.
63. 张献龙*, 孙玉强, 吴家和, 金双侠, 聂以春, 郭小平. 棉花细胞工程及新种质创造, 棉花学报, 2004, 06: 368-373.
64. 聂以春, 张献龙, 郭小平, 蔡明历. 转Bt基因抗虫杂交棉的光合性状遗传分析, 作物学报, 2004, 11: 1173-1175.
65. 朱龙付, 张献龙*. RNAi及其在植物遗传改良中的应用, 永利集团官网入口学报, 2004, 04: 472-477.
66. 李定国, 聂以春, 张献龙. 陆地棉棕色纤维色泽的遗传分析, 永利集团官网入口学报, 2004, 06: 606-609.
67. 林忠旭, 张献龙*, 聂以春, 贺道华, 吴茂清. 棉花SRAP遗传连锁图构建, 科学通报, 2003, 15: 1676-1679.
68. 高玉千, 聂以春, 张献龙. 棉花抗黄萎病基因的QTL定位, 棉花学报, 2003, 02: 73-78.
69. 李惠英, 张献龙*, 聂以春. 珂字201胚性愈伤组织cDNA文库的构建和分析(英文), 棉花学报, 2003, 04: 235-237.
70. 吴家和, 张献龙*, 罗晓丽, 肖娟丽. 两个陆地棉体细胞胚胎发生新品系的选育, 棉花学报, 2003, 04: 254-256.
71. 李惠英, 张献龙*. 陆地棉体细胞胚胎发生过程中的mRNA差异显示分析, 棉花学报, 2003, 05: 264-268.
72. 吴茂清, 张献龙*, 聂以春, 贺道华. 四倍体栽培棉种产量和纤维品质性状的QTL定位(英文), 遗传学报, 2003, 05: 443-452.
73. 吴家和, 张献龙*, 罗晓丽, 田颖川. 转新型双抗虫基因棉花的遗传分析, 遗传学报, 2003, 07: 631-636.
74. 涂礼莉, 张献龙*, 朱龙付, 聂以春, 郭小平. 海岛棉NBS类型抗病基因类似物的起源、多样性及进化, 遗传学报, 2003, 11: 1071-1077.
75. 吴家和, 田颖川, 罗晓丽, 郭洪年, 石跃进, 陈晓英, 贾燕涛, 肖娟丽, 张献龙*. 转两类抗虫基因棉花优良纯合品系的选育, 中国农业科学, 2003, 06: 651-656.
76. 朱龙付, 张献龙*, 聂以春. 利用RAPD和SSR标记分析陆地棉种质资源的遗传多样性, 农业生物技术学报, 2003, 05: 450-455.
77. 吴家和, 张献龙*, 聂以春. 棉花体细胞增殖和胚胎发生中的细胞程序性死亡, 植物生理与分子生物学学报, 2003, 06: 515-520.
78. 张美冬, 詹先进, 张献龙. 彩色棉品种资源的RAPD多态性分析, 永利集团官网入口学报, 2003, 05: 427- 430.
79. 左开井, 张献龙, 聂以春, 刘金兰, 孙济中. 转基因抗虫棉Bt基因插入区碱基组成分析, 遗传学报, 2002, 08: 735-740.
80. 徐秋华, 张献龙*, 聂以春, 冯纯大. 我国棉花抗枯萎病品种的遗传多样性分析, 中国农业科学, 2002, 03: 272-276.
81. 聂以春, 周肖荣, 张献龙. 转基因抗虫棉的产量、品质及抗虫性比较研究, 植物遗传资源科学, 2002, 3(4): 8-12.
82. 朱龙付, 张献龙*, 聂以春, 吴家和. 转基因抗虫棉品种(系)的遗传多样性初步研究, 永利集团官网入口学报, 2002, 05: 401-405.
83. 陈妹幼, 聂以春, 张献龙*. 转化棉花胚性愈伤可以有效缩短转基因周期, 永利集团官网入口学报, 2002, 05: 406-408.
84. 王武, 聂以春, 张献龙*, 孙济中. 转基因抗虫组合在棉花杂种优势利用中增产原因剖析, 永利集团官网入口学报, 2002, 05: 419-424.
85. 王武, 张献龙*, 孙济中, 聂以春. 转基因抗虫组合F2代群体农艺性状变异及其利用价值评估, 棉花学报, 2002, 01: 8-12.
86. 聂以春, 张献龙, 杨德华. 陆地棉×辣根棉后代主要性状的遗传变异, 棉花学报, 2002,04: 219-222.
87. 陈妹幼, 张献龙*, 聂以春, 吴家和. 陆地棉体细胞再生植株技术的改进研究, 棉花学报, 2002, 06: 344-347.
88. 罗晓丽, 吴家和, 肖娟丽, 石跃进, 张献龙. 非珂字棉系统陆地棉的转化效率, 棉花学报, 2002, 06: 365-367.
89. 徐秋华, 张献龙*, 冯纯大, 聂以春. 河北省和中棉所育成陆地棉品种的遗传多样性分析,棉花学报, 2001, 04: 238-242.
90. 徐秋华, 张献龙*, 聂以春. 长江、黄河流域两棉区陆地棉品种的遗传多样性比较研究, 遗传学报, 2001, 07: 683-690.
91. 聂以春, 张献龙, 雷朝亮. 棉花种间杂种后代抗红蜘蛛特性鉴定初报, 植物遗传资源科学, 2001, 01: 40-43.
92. 左开井, 孙济中, 张献龙, 聂以春, 刘金兰, 冯纯大. 利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图(英文), 永利集团官网入口学报, 2000, 03: 190-193.
93. 聂以春, 左开井, 张献龙, 冯纯大. RAPD标记分析棉花种间杂种后代的遗传相似性, 永利集团官网入口学报, 2000, 06: 523-527.
94. 聂以春, 左开井, 张献龙, 冯纯大, 刘金兰. RAPD标记在棉属种间杂种后代检测中的应用, 中国农业科学, 2000, 05: 25-29.
95. 张献龙, 姚明镜, 史平臣, 董新国. 陆地棉抗枯萎病细胞系再生株后代的抗性鉴定, 中国棉花, 1998, 07: 8-9.
96. 聂以春, 刘金兰, 张献龙. 不同来源棉花种质材料对红铃虫的抗性初报, 中国棉花, 1998, 12: 20-21.
97. 吕复兵, 张献龙, 刘金兰. 陆地棉原生质体培养与植株再生, 华北农学报, 1999, 01: 73-78.
98. 董新国, 张献龙*, 聂以春, 陈志贤, 吴家和. 陆地棉花药培养的解剖学和细胞学研究, 作物学报, 1999, 06: 782-785.
99. 聂以春, 刘金兰, 张献龙. 新合成的棉花遗传资源-异源四倍体(亚洲棉×司笃克氏棉)初报, 作物品种资源, 1999, 03: 24.
100. 张献龙, 孙济中. 棉花生物技术研究概况Ⅰ.棉花组织培养与基因工程研究, 武汉植物学研究, 1999, 03: 68-75.
101. 张献龙, 孙济中. 棉花生物技术研究概况Ⅱ.棉花分子生物学研究, 武汉植物学研究, 1999, 04: 362-370.
102. 董新国, 张献龙*, 陈志贤, 聂以春, 吴家和. 陆地棉花药愈伤组织的诱导和继代培养, 武汉植物学研究, 1999, 03: 83-87.
103. 张献龙*, 林双龙, 吕复兵, 董新国. 陆地棉微茎尖培养影响因素的研究, 永利集团官网入口学报, 1996, 03: 210-214.
104. 张献龙, 李涛, 孙济中. 抗生素对棉花愈伤组织诱导和生长的影响, 永利集团官网入口学报, 1996, 02: 123-126.
105. 聂以春, 刘金兰, 张献龙. 人工合成的棉属异源四倍体(亚洲棉×司笃克氏棉)种质的胚胎发育, 永利集团官网入口学报, 1997, 06: 5-9.
106. 张家明, 孙雪飘, 郑学勤, 张献龙, 赵燕, 刘金兰, 孙济中. 陆地棉愈伤诱导及胚胎发生能力的遗传分析, 中国农业科学, 1997, 03: 36-43.
107. 王武, 李秀兰, 张献龙, 刘金兰. 油菜素内酯在棉花组织培养中的应用研究Ⅰ.油菜素内酯对陆地棉体细胞胚胎发生和根器官发生的影响, 棉花学报, 1994, 02: 83-88.
108. 张献龙, 姚明镜, 刘金兰, 孙济中. 陆地棉枯萎病抗源的体外筛选研究Ⅰ.抗性细胞系的筛选及植株再生, 棉花学报, 1994, 03: 178-183.
109. 姚明镜, 张献龙, 刘金兰, 孙济中. 棉花黄萎病菌培养滤液对棉幼苗、种子发芽及离体培养物的毒害作用, 棉花学报, 1994, 03: 184-188.
110. 张家明, 孙济中, 刘金兰, 张献龙. 陆地棉体细胞植株再生及其移栽技术研究, 作物学报, 1994, 02: 210-216.
111. 姚明镜, 张献龙, 刘金兰, 孙济中. 陆地棉抗黄萎病细胞系几个生理生化指标的测定, 永利集团官网入口学报, 1995, 04: 338-343.
112. 姚明镜, 张献龙, 刘金兰, 孙济中. 陆地棉黄萎病体细胞抗性突变体的筛选研究, 棉花学报, 1995, 01: 59-65.
113. 张献龙, 姚明镜, 刘金兰, 孙济中. 陆地棉抗性细胞系耐枯萎病菌毒素的生化机制研究, 中国农业科学, 1995, S1: 150-156.
114. 张献龙. 棉花体细胞培养研究进展, 湖北农业科学, 1991, 04: 37-40.
115. 张献龙, 孙济中, 刘金兰. 陆地棉体细胞胚胎发生与植株再生, 遗传学报, 1991, 05: 461-467.
116. 张献龙, 王武, 刘金兰, 孙济中. 不同激素诱导陆地棉体细胞胚胎发生的效应, 永利集团官网入口学报, 1991, 03: 247-251.
117. 张献龙, 孙济中, 刘金兰. 陆地棉品种“珂字201”胚性与非胚性愈伤组织生化代谢产物的比较研究, 作物学报, 1992, 03: 176-182.
118. 王武, 张献龙, 刘金兰. 油菜素内酯对陆地棉体细胞胚胎发生的影响, 植物生理学通讯, 1992, 01: 15- 18.
119. 张献龙, 姚明镜, 刘金兰, 孙济中. 棉花枯萎病菌毒素对种子发芽和组织生长的毒害作用, 永利集团官网入口学报, 1993, 04: 317-322.
120. 张献龙, 张家明, 姚明镜, 孙济中, 刘金兰. 棉花体细胞培养及其应用基础研究, 永利集团官网入口学报, 1993, 05: 421-426.
121. 张献龙, 孙济中, 刘金兰. 棉属远缘杂种胚珠离体培养研究, 中国农业科学, 1988, 06: 53-58.
122. 张献龙. 棉花胚珠培养中的两种关系, 中国棉花, 1988, 03: 9-11.
123. 张献龙, 刘金兰, 孙济中. 陆地棉×亚洲棉胚胎在培养条件下的发育研究, 永利集团官网入口学报, 1988, 03: 2
论文列表(英文):
Cotton Fiber Development
1. Wang M, Wang P, Liang F, Ye Z, Li J, Shen C, Pei L, Wang F, Hu J, Tu L, Lindsey K, He D*, Zhang X*. A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation, New Phytol, 2018, 217(1):163-178
2. Hu H, Wang M, Ding Y, Zhu S, Zhao G, Tu L*, Zhang X. Transcriptomic repertoires depict the initiation of lint and fuzz fibers in cotton (Gossypium hirsutum L.), Plant Biotechnol J, 2018, 16(5):1002-1012
3. Wang M, Wang P, Lin M*, Ye Z, Li G, Tu L, Shen C, Li J, Yang Q*, Zhang X*. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton, Nat Plants, 2018, 4(2):90-97
4. Guo K, Tu L*, Wang P, Du X, Ye S, Luo M, Zhang X. Ascorbate alleviates Fe deficiency-induced stress in cotton (Gossypium hirsutum) by modulating ABA levels Front Plant Sci, 2017, 7:1997
5. Liu N, Tu L, Wang L, Hu H, Xu J, Zhang X*. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton. BMC Plant Biol, 2017, 17(1): 7
6. Guo K, Tu L*, He Y, Deng J, Wang M, Huang H, Li Z, Zhang X. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells. J Exp Bot, 2017, 68 (18): 5161-5175
7. Hu H, He X, Tu L, Zhu L, Zhu S, Ge Z, Zhang X*. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J, 2016, 88(6): 921-935
8. Guo K, Du X, Tu L*, Tang W, Wang P, Wang M, Liu Z, Zhang X. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). J Exp Bot, 2016, 67(11): 3289-3301
9. Wang M, Wang P, Tu L, Zhu S, Zhang L, Li Z, Zhang Q, Yuan D, Zhang X*. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation. Nucleic Acids Res, 2016, 44(9): 4067-79
10. Li Y, Tu L*, Pettolino FA, Ji S, Hao J, Yuan D, Deng F, Tan J, Hu H, Wang Q, Llewellyn DJ, Zhang X. GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. Plant Biotechnol J, 2016, 14(3): 951-963
11. Yuan D, Tang Z, Wang M, Gao W, Tu L, Jin X, Chen L, He Y, Zhang L, Zhu L, Li Y, Liang Q, Lin Z, Yang X, Liu N, Jin S, Lei Y, Ding Y, Li G, Ruan X, Ruan Y*, Zhang X*. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep, 2015, 5:17662
12. Li Y, Tu L*, Ye Z, Wang M, Gao W, Zhang X. A cotton fiber-preferential promoter, PGbEXPA2, is regulated by GA and ABA in Arabidopsis. Plant Cell Rep, 2015, 34(9): 1539-1549
13. Wang M, Yuan D, Tu L, Gao W, He Y, Hu H, Wang P, Liu N, Lindsey K, Zhang X*. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol, 2015, 207(4): 1181-97
14. Liu N, Tu L, Tang W, Gao W, Lindsey K, Zhang X*. Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense. Plant J, 2014, 80(2): 331-344
15. Tang W, He Y, Tu L*, Wang M, Li Y, Ruan Y, Zhang X. Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. Plant Mol Biol, 2014, 85(6): 613-25
16. Tang W, Tu L*, Yang X, Tan J, Deng F, Hao J, Guo K, Lindsey K, Zhang X*. The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol, 2014, 202(2): 509-520
17. Han J, Tan J, Tu L*, Zhang X. Peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre. Plant Biotechnol J, 2014, 12(7): 861-871
18. Tan J, Wang M, Tu L*, Nie Y, Lin Y, Zhang X. The flavonoid pathway regulates the petal colors of cotton flower. PLos ONE, 2013, 8(8): e72364
19. Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X*. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol, 2013, 162(1): 86-95
20. Wang M, Yuan D*, Gao W, Li Y, Tan J, Zhang X*. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls. Plos ONE, 2013, 8(8): e72082
21. Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X*. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot, 2012, 63(17): 6267-6281
22. Deng F, Tu L, Tan J, Li Y, Nie Y, Zhang X*. GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol, 2012, 158(2): 890-904
23. Tan J, Tu L*, Deng F, Wu R, Zhang X. Exogenous Jasmonic Acid Inhibited Cotton Fiber Elongation. J Plant Growth Regul, 2012, 31: 599-605
24. Yuan D, Tu L, and Zhang X*. Generation, annotation and analysis of first large-scale expressed sequence tags from developing fiber of Gossypium barbadense L. , PLoS ONE, 2011, 6(7): e22758
25. Munis M, Lili Tu, Deng F, Tan F, Xu L, Xu S, Long L and Zhang X*. A thaumatin-like protein (PR-5) gene of cotton (Gossypium barbadence L.) involved in fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun, 2010, 393: 38-44
26. Li Y, Liu D, Tu L, Zhang X*, Wang L, Zhu L, Tan J, Deng F. Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber. Plant Cell Rep, 2010, 29: 193-202
27. Liu D, Tu L, Li Y, Wang L, Zhu L, Zhang X*. Genes encoding Fasciclin-Like Arabinogalactan proteins are specifically expressed during cotton fiber development. Plant Mol Biol Rep, 2008, 26: 98-113
28. Liu D, Tu L, Wang L, Li Y, Zhu L, Zhang X*. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep, 2008, 27: 1385-1394
29. Tu L, Zhang X*, Liang S, Liu D, Zhu L, Zeng F, Nie Y, Guo X, Deng F, Tan J, Xu L. Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep, 2007, 26: 1309-1320
30. Tu L, Zhang X*, Liu D, Jin S, Cao J, Zhu L, Deng F, Tan J, Zhang C. Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chinese Sci Bull, 2007, 52: 3110-3117
31. Liu D, Zhang X*, Tu L, Zhu L, Guo X. Isolation by suppression-subtractive hybridization of genes preferentially expressed during early and later fiber development stages in cotton. Mol Bio, 2006, 40(5): 741-749
Germplasm, Cotton Genomics and Molecular Quantitative Genetics
32. Wang M, Tu L, Yuan D, Zhu, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen LL, Zheng H, Lindsey K*, Lin Z*, Udall JA*, Zhang X*. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51(2):224-229.
33. Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K*, Zhang X*. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet, 2017, 49(4): 579-587
34. Huang C, Nie X, Shen C, You C, Li W, Zhao W, Zhang X*, Lin Z*. Population structure and genetic basis of the agronomic traits of Upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J, 2017, 15(11):1374-1386
35. Nie X, Huang C, You C, Li W, Zhao W, Shen C, Zhang B, Wang H, Yan Z, Dai B, Wang M, Zhang X, Lin Z*. Genome-wide SSR-based association mapping for fiber quality in nation-wide Upland cotton inbreed cultivars in China. BMC Genomics, 2016, 17:352
36. Dai B, Guo H, Huang C, Zhang X, Lin Z*. Genomic heterozygosity and hybrid breakdown in cotton (Gossypium): different traits, different effects. BMC Genet, 2016, 17:58
37. Yuan D, Tang Z, Wang M, Gao W, Tu L, Jin X, Chen L, He Y, Zhang L, Zhu L, Li Y, Liang Q, Lin Z, Yang X, Liu N, Jin S, Lei Y, Ding Y, Li G, Ruan X, Ruan Y*, Zhang X*. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep. 2015, 5: 17662
38. Li X, Jin X, Wang H, Zhang X, Lin Z*. Structure, evolution, and comparative genomics of tetraploid cotton based on a high-density genetic linkage map. DNA Res, 2016, 23 (3): 283-293
39. Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang J. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics, 2015, 290:1003-1025
40. Li X, Gao W, Guo H, Zhang X, Fang DD, Lin Z*. Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping. BMC Genomics, 2014, 15: 1046
41. Tu JL, Zhang MJ, Wang XQ, Zhang XL and Lin ZX*. Genetic dissection of Upland cotton (Gossypium hirsutum) cultivars developed in Hubei Province by mapped SSRs. Genet Mol Res, 2014, 13 (1): 782-790
42. Said JI, Lin Z, Zhang X, Song M, Zhang J. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics, 2013, 14:776
43. Ahmed MM, Guo H, Huang C, Zhang X, Lin Z*. Selection of core SSR markers for fingerprinting Upland cotton cultivars and hybrids. AJCS, 2013, 7(12): 1912-1920
44. Chen X, Gao W, Zhang J, Zhang X, Lin Z*. Linkage mapping and expression analysis of miRNAs and their target genes during fiber development in cotton. BMC Genomics, 2013, 14:706
45. Wang XQ, Yu Y, Li W, Guo HL, Lin ZX*, Zhang XL. Association analysis of yield and fiber quality traits in Gossypium barbadense with SSRs and SRAPs. Genet Mol Res, 2013, 12 (3): 3353-3362
46. Liu C, Yuan D, Zhang X, Lin Z*. Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP. J Genet, 2013, 92, 175-181
47. Wang X, Yu Y, Sang J, Wu Q, Zhang X, Lin Z*. Intraspecific linkage map construction and QTL mapping of yield and fiber quality of Gossypium babardense. AJCS, 2013, 7(9): 1252-1261
48. Li X, Yuan D, Zhang J, Lin Z*, Zhang X. Genetic Mapping and Characteristics of Genes Specifically or Preferentially Expressed during Fiber Development in Cotton. PLoS ONE, 2013, 8(1): e54444
49. Yuan D, Liang S, Lin Z*, Zhang X. In silico comparative analysis of EST-SSRs in three cotton genomes. African J Biotechnol, 2012, 11(69): 13269-13371
50. Wang B, Nie Y, Lin Z*, Zhang X, Liu J, Bai J. Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × G. darwinii Watt. Theor Appl Genet, 2012, 125: 1263-1274
51. Lin Z, Wang Y, Zhang X, Zhang J. Functional markers for cellulose synthase and their comparison to SSRs in cotton. Plant Mol Biol Rep, 2012, 30:1270-1275
52. Li X, Yuan D, Wang H, Chen X, Wang B, Lin Z*, Zhang X. Increasing cotton genome coverage with polymorphic SSRs as revealed by SSCP. Genome, 2012, 55(6): 459-470.
53. Wang X, Ren G, Li X, Tu J, Lin Z*, Zhang X. Development and evaluation of intron and insertion–deletion markers for Gossypium barbadense. Plant Mol Biol Rep, 2012, 30(3): 605-613
54. Yu Y, Lin Z*, Zhang X. Genome-wide identification of recombination rates of male versus female gametes in inter-specific population of cotton. Pak J Bot, 2012, 44(2): 521-529
55. Wang XQ, Feng CH, Lin ZX*, Zhang XL. Genetic diversity of sea-island cotton (Gossypium barbadense) revealed by mapped SSRs. Genet Mol Res, 2011, 10(4): 3620-3631
56. Yu Y, Yuan DJ, Liang SG, Li XM, Wang XQ, Lin ZX*, Zhang XL. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics, 2011, 12:15
57. Lin Z, Yuan D, Zhang X*. Mapped SSR markers unevenly distributed on the cotton chromosomes. Front Agric China, 2010, 4(3): 257-264
58. Lin Z, Zhang Y, Zhang X*, Guo X. A high-density integrative linkage map for Gossypium hirsutum. Euphytica, 2009, 166: 35-45
59. Zhang Y, Lin Z, Xia Q, Zhang M, Zhang X*. Characteristics and analysis of SSRs in cotton genome based on a linkage map constructed by BC1 population between Gossypium hirsutum and G. barbadense. Genome, 2008, 51(7): 534-546
60. Lin Z, Wang J, Zhang X*. Characteristics of Gossypium thurberi and G. anomalum introgression lines of G. hirsutum revealed by EST-SSR and gSSR. Cotton Sci, 2008, 20(4): 243-248
61. He DH, Lin ZX, Zhang XL*, Zhang YX, Li W, Nie YC, Guo XP. Dissection of genetic variance of .bre quality in advanced generations from an interspeci.c cross of Gossypium hirsutum and G. barbadense. Plant Breed, 2008, 127: 286-294
62. Wang HM, Lin ZX, Zhang XL*, Chen W, Guo XP, Nie YC, Li YH. Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton. J Integ Plant Biol, 2008, 50(2): 174-182
63. Zhang Y#, Lin Z#, Li W, Tu L, Nie Y, Zhang X*. Studies of new EST-SSRs derived from Gossypium barbadense. Chin Sci Bull, 2007, 52(18): 2522-2531
64. Li W, Lin Z, Zhang X*. A novel segregation distortion in intraspecific population of Asian cotton (Gossypium arboretum L.) detected by molecular markers. J genet genomics, 2007, 34: 634-640
65. He DH, Lin ZX, Zhang XL*, Nie YC, Guo XP, Zhang YX, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum×Gossypium barbadense. Euphytica, 2007, 153(1-2): 181-197
66. Liu D, Guo X*, Lin Z, Nie Y, Zhang X. Genetic diversity evaluation of Chinese Asian cotton (Gossypium arboretum) accessions by SSR markers. Genet Resour Crop Ev, 2006, 53(6): 1145-1152
67. Lin Z, He D, Zhang X*, Nie Y, Guo X, Feng C, Stewart JMcD. Linkage map construction and mapping QTL for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124(2): 180-187
68. He DH, Lin ZX, Zhang XL*, Nie YC, Guo XP, Feng CD, Stewart JMcD. Mapping QTLs of traits contributing to yield and analysis genetic effects in tetraploid cotton. Euphytica, 2005, 144: 141-149
69. Lin Z, Zhang X*, Nie Y, He D, Wu M. Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull, 2003, 48(19): 2063-2067
Cotton Genetic Engineering and Biotechnology
70. Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, Li B, Lindsey K, Daniell H, Jin S*, Zhang X*. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J, 2018, doi: 10.1111/pbi.13020.
71. Wang PC, Zhang J, Sun L, Ma YZ, Xu J, Liang SJ, Deng JW, Tan JF, Zhang Q, Tu LL, Daniell Henry, Jin SX*, Zhang XL*. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018, 16(1):137-150.
72. Xu ZP, Li JW, Guo XP, Jin SX*, Zhang XL*. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference. Sci Rep, 2016, 6:33342
73. Jin SX, Liu GZ, Zhu HG, Yang XY and Zhang XL. Transformation of upland cotton (Gossypium hirsutum L.) with gfp gene as a visual marker. J Integr Agr, 2012, 11(6): 910-919
74. Liu G, Jin S, Liu X, Tan J, Yang X, Zhang X. Overexpression of Arabidopsis cyclin D2;1 in cotton results in leaf curling and other plant architectural modifications. Plant Cell Tissue Organ Cult, 2012, 110(2): 261-273
75. Yang X, Zhang X*, Tu L, Min L, Liu G. Multiple shoots induction in wild cotton (Gossypium bickii) through organogenesis and the analysis of genetic homogeneity of the regenerated plants. Biologia, 2010, 65(3): 496-503
76. Fu L, Yang X, Zhang X*, Wang Z, Feng C, Liu C, Jiang P, Zhang J. Regeneration and identification of interspecific asymmetric somatic hybrids obtained by donor-recipient fusion in cotton. Chin Sci Bull, 2009, 54(17): 3035-3044
77. Jin S, Mushke R, Zhu H, Tu L, Lin Z, Zhang Y, Zhang X*. Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep, 2008, 27(8): 1303-1316
78. Jin SX, Zhang XL*, Zhu HG, Zhou ZL, Nie YC. Detection of somaclonal variation of cotton (Gossypium hirsutum) through RAPD, SSR markers, cytogenetic and flow cytometer analysis. Plant Cell Rep, 2008, 27: 1303-1316
79. Xie DY, Jin SX, Guo XP, Zhang XL*. Genetic transformation of cotton with embryogenic calli as explants and efficient transgenic somatic embryoid germination and plant recovery. Acta Agronomica Sinica, 2007, 8(3): 279-292
80. Xie DY, Jin SX, Guo XP, Zhang XL*. Somatic embryogenesis and plant regeneration in cotton cultivars from yellow and yangtze river planting areas. Acta Agronomica Sinica, 2007, 33(3): 394-400
81. Guo X, Jin SX, Zhang XL*. Agrobacterium-mediated transformation of Cry1C, Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration. Biol Plantarum, 2007, 51(2): 242-248
82. Zhang XL and Jin SX. Transgenic Cotton: An Overview. Transgenic Plant J, 2007, 1(1): 150-162
83. Guo X, Huang C, Jin S, Liang S, Nie Y, Zhang X*. Agrobacterium-mediated transformation of Cry1C, Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration. Biol Plantarum, 2007, 51(2): 242-248
84. Yang XY, Guo XP, Zhang XL*, Nie YC and Jin SX. Plant regeneration from Gossypium davidsonii protoplasts via somatic embryogenesis. Biol Plantarum, 2007, 51 (3): 533-537
85. Jin SX, Han J, Liu XY, Liu GZ, Wang YX, Tang WX, Zhang XL*. Chloroplast DNA extraction in cotton by SDS-proteinase method and cloning of the promoter and terminator of psbA gene. Mol Plant Breeding, 2007, 5:683-689
86. Yang XY, Zhang XL*, Jin SX, Fu LL, Wang LG. Production and characterization of asymmetric hybrids between upland cotton Coker201 (Gossypium hirsutum) and wild cotton (Gossypium klozschianum Anderss). Plant Cell Tissue Organ Cult, 2007, 89:225-235
87. Zhou XF, Zhang BY, Liu GZ, Gao W, Yu Y, Deng FJ, Li BC, Kong XH, Zhang XL, Jin SX*. Genotype selection of Xinjiang cottons with higher ability of somatic embyrogenesis and plant regeneration. Mol Plant Breeding, 2007, 6:1-8
88. Sun Y, Zhang X*, Huang C, Guo X, Nie Y. Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep, 2006, 25(4): 289-296
89. Sun Y, Nie Y, Guo X, Huang C, Zhang X*. Somatic hybrids between Gossypium hirsutum L. (4×) and G. davidsonii Kellog (2×) produced by protoplast fusion. Euphytica, 2006, 151(3): 393-400
90. Jin S, Zhang X*, Nie Y, Guo X, Liang S, Zhu H. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biologia Plantarum, 2006, 50(4): 519-524
91. Jin S, Liang S, Zhang X*, Nie Y, Guo X. An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult, 2006, 85(2):181-185
92. Wu J, Zhang X*, Nie Y, Luo X. High-efficiency transformation of Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breeding, 2005, 124(2): 142-146
93. Sun Y, Zhang X*, Nie Y, Guo X. Production of fertile somatic hybrids of Gossypium hirsutum + G. bickii and G. hirsutum + G. stockii via protoplast fusion. Plant Cell Tissue Organ Cult. 2005, 83(3): 303-310
94. Sun Y, Zhang X*, Huang C, Nie Y, Guo X. Plant regeneration via somatic embryogenesis from protoplasts of six explants in Coker 201 (Gossypium hirsutum). Plant Cell Tissue Organ Cult. 2005, 82(3): 309-315.
95. Sun Y, Zhang X*, Huang C, Nie Y, Guo X. Factors influencing in vitro regeneration from protoplasts of wild cotton (G. klotzschianum A) and RAPD analysis of regenerated plantlets. Plant Growth Regul, 2005, 46(1): 79-86
96. Jin S, Zhang X*, Liang S, Nie Y, Guo X, Huang C. Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult, 2005, 81(2): 229-237
97. Jin SX, Zhang XL*. Function analysis of promoter trapping system after inserting cotton (Gossypium hirsutum L.) genome. J Genet Genomics. 2005, 32(12): 1266-1274
98. Zhu L, Tu L, Zen F, Liu D, Zhang X*. An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agronomica Sinica, 2005, 31(12): 1657-1659
99. Wu J, Zhang X*, Nie Y, Jin S, Liang S. Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). In Vitro Cell Dev-Pl, 2004, 40(4): 371-375
100. Zhang XL, Sun YQ, Wu JH, Jin SX, Nie YC, Guo XP. Cell engineering and new germplasm development in cotton. Cotton Sci, 2004, 16(6): 368-373
101. Sun Y, Zhang X*, Nie Y, Guo X, Jin S, Liang S. Production and characterization of somatic hybrids between upland cotton (Gossypium hirsutum) and wild cotton (G. klotzschianum Anderss) via electrofusion. Theor Appl Genet, 2004, 109(3): 472-479
102. Sun YQ, Zhang XL, Jin SX. Somatic embryogenesis and plant regeneration in wild cotton (Gossypium klotzschianum Anderss). Plant Cell Tissue Organ Cult, 2003, 75: 247-253
Somatic Embryogenesis and Reproductive Development in Cotton
103. Li J, Wang M, Li Y, Zhang Q, Lindsey K2, Daniell H3, Jin S, Zhang X.*. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnol J, 2018, 17(2):435-450.
104. Xu J, Yang X, Li B, Chen L, Min L, Zhang X*. GhL1L1 affects cell fate specification by regulating GhPIN1-mediated auxin distribution. Plant Biotechnol J, 2018, 17(1):63-74.
105. Wang L, Liu N, Wang T, Li J, Wen T, Yang X*, Lindsey K, Zhang X. The GhmiR157a/GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. J Exp Bot, 2018, 69(5):1081-1093.
106. Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L*, Zhang X. microRNAs involved in auxin signalling modulate male sterility under high temperature stress in cotton (Gossypium hirsutum). Plant J, 2017, 91(6):977-994
107. Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, Lindsey K, Zhang X*. ROS homeostasis regulates somatic embryogenesis via the regulation of auxin signaling in cotton. Mol Cell Proteomics, 2016, 15(6): 2108-2124
108. Wu Y, Min L, Wu Z, Yang L, Zhu L, Yang X, Yuan D, Guo X, Zhang X*. Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton. Sci Rep, 2015, 5: 9608
109. Min L, Hu Q, Li Y, Xu J, Ma Y, Zhu L, Yang X, Zhang X*. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 network regulates somatic embryogenesis by regulating auxin homeostasis. Plant Physiol, 2015, 169(4): 2805-2821
110. Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X*. Sugar and auxin signaling pathways respond to high temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol, 2014, 164(3): 1293-1308
111. Min L, Zhu L*, Tu L, Deng F, Yuan D, Zhang X*. Cotton GhCKIdisrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J, 2013, 75: 823-835
112. Jin F, Hu L, Yuan D, Xu J, Gao W, He L, Yang X*, Zhang X*. Comparative transcriptome analysis between somatic embryos and zygotic embryos in cotton: evidence for stress response functions in somatic embryo development. Plant Biotechnol J, 2013, 12(2): 161-173
113. Yang X#, Wang L#, Yuan D, Lindsey K and Zhang X*. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot, 2013, 64(6): 1521-1536
114. Hu L, Yang X, Yuan D, Zeng F, Zhang X*. GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J, 2011, 9: 1038-1048
115. Yang X, Zhang X*. Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci, 2010, 29(1): 36-57
116. Yang XY, Zhang XL. Chapter 23 Developmental and molecular aspects of somatic embryogenesis. In: Plant Tissue Culture: Development and Biotechnology, Trigiano RN and Gray DJ (ed.), Taylor & France Group, CRC Press, LLC, Boca Raton, USA, 2010, 307-325
117. Zhu HG, Tu LL, JIn SX, Xu L, Tan JF, Deng FL, Zhang XL*. Differential expression analysis of related genes during initial cellular dedifferentiation in cotton. Chinese Sci Bull, 2008, 53 (20): 2483-492
118. Yang X, Tu L, Zhu L, Fu L, Min L, Zhang X*. Expression profile analysis of genes involved in cell wall regeneration during protoplast culture in cotton by suppression subtractive hybridization and macroarray. J Exp Bot, 2008, 59(13): 3661-3674
119. Zeng F, Zhang X*, Jin S, Cheng L, Liang S, Hu L, Guo X, Nie Y, Cao J. Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell Tissue Organ Cult. 2007, 90(1): 63-70
120. Zeng F, Zhang X*, Cheng L, Hu L, Zhu L, Cao J, Guo X. A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics, 2007, 90(5): 620-628
121. Zeng F, Zhang X*, Zhu L, Tu L, Guo X, Nie Y. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol, 2006, 60(2): 167-183
Stress Responses and Stress Resistance-Breeding Basis in Cotton
Disease Resistance
122. Miao Y, Xu L, He X, Zhang L, Shaban M, Zhang X*, Zhu L*. Suppression of tryptophan synthase activates cotton immunity by triggering cell death via promoting SA synthesis. Plant J, 2019, doi: 10.1111/tpj.
123. Hu Q, Zhu L, Zhang X, Guan Q, Xiao S, Min L, Zhang X*. GhCPK33 Negatively Regulates Defense against Verticillium dahliae by Phosphorylating GhOPR3. Plant Physiol, 2018, 178(2):876-889.
124. Zhou Y, Sun L, Wassan GM, He X, Shaban M, Zhang L, Zhu L, Zhang X*. GbSOBIR1 confers Verticillium wilt resistance by phosphorylating the transcriptional factor GbbHLH171 in Gossypium barbadense. Plant Biotechnol J, 2018, 17(1):152-163.
125. Hu Q, Min L, Yang X, Jin S, Zhang L, Li Y, Ma Y, Qi X, Li D, Liu H, Lindsey K, Zhu L, Zhang X. Laccase GhLac1 Modulates Broad-Spectrum Biotic Stress Tolerance via Manipulating Phenylpropanoid Pathway and Jasmonic Acid Synthesis. Plant Physiol, 2018, 176(2):1808-1823.
126. Zhang L, Wang M, Li N, Wang H, Qiu P, Pei L, Xu Z, Wang T, Gao E, Liu J, Liu S, Hu Q, Miao Y, Lindsey K, Tu L, Zhu L, Zhang X*. Long non-coding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton. Plant Biotechnol J, 2018, 16(6):1172-1185.
127. Song Y, Liu L, Wang Y, Valkenburg D J, Zhang X, Zhu L, Thomma B*. Transfer of tomato immune receptor Ve1 confers Ave1-dependent Verticillium resistance in tobacco and cotton, Plant Biotechnol J, 2018, 6(2):638-648.
128. He X, Zhu L, Wassan G, Wang Y, Miao Y, Shaban M, Hu H, Sun H, Zhang X*. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. Mol Plant Pathol, 2018, 19(4):896-908.
129. He X, Zhu L, Xu L, Guo W, Zhang X*. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Rep, 2016, 35: 2167-2179
130. Guo W, Jin L, Miao Y, He X, Hu Q, Guo K, Zhu L*, Zhang X. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis. Plant Mol Biol, 2016, 91: 305-318
131. Gao W, Long L, Xu L, Lindsey K, Zhang X, Zhu L*. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. J Integr Plant Biol, 2016, 58: 503-513
132. Xu L, Zhang W, He X, Liu M, Zhang K, Shaban M, Sun L, Zhu J, Luo Y, Yuan D, Zhang X, Zhu L*. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies. J Exp Bot, 2014, 65(22): 6679-6692
133. Sun L, Zhu L, Xu L, Yuan D, Min L, Zhang X*. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nat Commun, 2014, 5:5372
134. Li C, He X, Luo X, Xu L, Liu L, Min L, Jin L, Zhu L*, Zhang X. GbWRKY1 mediates plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JAZ1 expression. Plant Physiol, 2014, 166(4): 2179-2194
135. Long L, Gao W, Xu L, Liu M, Luo X, He X, Yang X, Zhang X, Zhu L*. GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell Tissue Organ Cult, 2014, 116: 153-162
136. Gao W, Long L, Zhu L*, Xu L, Gao W, Sun L, Liu L, Zhang X*. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that Gossypol, Brassinosteroids and Jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12(12): 3690-3703
137. Xu L, Jin L, Long L, Liu L, He X, Gao W, Zhu L*, Zhang X. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis. Plant Cell Rep, 2012, 31: 2177
138. Xu L, Zhu L, Tu L, Guo X, Long L, Sun L, Gao W, Zhang X*. Differential Gene Expression in Cotton Defence Response to Verticillium dahliae by SSH. J Phytopathology, 2011, 159: 606-615
139. Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L and Zhang X*. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot, 2011, 62(15): 5607-5621
140. Zhu L*, H X, Yuan D, Xu L, Xu L, Tu L, Shen G, Zhang H, Zhang X*. Genome-wide identification of genes responsive to ABA and cold/salt stresses in Gossypium hirsutum by data-mining and expression pattern analysis. Agricult Sci China. 2011, 10(4): 499-508
141. Munis M, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X*. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun, 2010, 393(1): 38-44
142. Zhu L, Zhang X*, Tu L, Zeng F, Nie Y, Guo X. Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae. J Plant Pathology, 2007, 89(1): 41-45
Pest resistance
143. Luo J, Liang SJ, Li JY, Xu ZP, Li L, Zhu BQ, Li Z, Lei CL, Lindsey K, Chen LZ*, Jin SX*, Zhang XL. A transgenic strategy for controlling plant bugs (Adelphocoris suturalis) through expression of double- stranded RNA (dsRNA) homologous to Fatty acyl-CoA reductase (FAR) in cotton. New Phytol, 2017, 215(3):1173-1185
144. Li JY, Zhu LZ, Hull J, Liang SJ, Daniell H, Jin SX*, Zhang XL. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechonol J, 2016, 14(10): 1956-1975
145. Wang Q, Zhu Y, Sun L, Li LB, Jin SX* and Zhang XL. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to Lepidopteran pests and lower Bt toxin accumulation in seeds. Sci China Life Sci, 2016, 59(2): 172
146. Jin SX, Singh D, Li LB, Zhang XL and Daniell H. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthases genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechonol J, 2015, 13 (3): 435-446
147. Tian G, Cheng L, Qi XW, Ge ZH, Niu CY, Zhang XL, Jin SX*. Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int J Biol Sci, 2015, 11(11): 1296-1305
148. Li LB, Zhu Y, Jin SX*, Zhang XL. Pyramiding. Bt genes for increasing resistance of cotton to two major lepidopteran Pests: Spodoptera litura and Heliothis armigera. Acta Physiol Plant, 2014, 36 (10): 2717-2727
149. Jin SX, Zhang XL, Daniell H. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, lepidopteran insects, bacterial and viral pathogens. Plant Biotechonol J, 2012, 10(3): 313-327
Abiotic Stress Resistence
150. Xu J, Chen L, Sun H, Wusiman N, Sun W, Li B, Gao Y, Kong J, Zhang D, Zhang X*, Xu H*, Yang X*. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot, 2019, 70(5):1525-1538.
151. Sun H, Hu M, Li J, Chen L, Li M, Zhang S, Zhang X, Yang X. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biol, 2018, 18(1):150.
152. Ma Y, Min L, Wang M, Wang C, Zhao Y, Li Y, Fang Q, Wu Y, Xie S, Ding Y, Su X, Hu Q, Zhang Q, Li X, Zhang X. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell, 2018, 30(7):1387-1403.
153. Ullah A, Sun H, Hakim, Yang X*, Zhang X. A novel cotton WRKY-gene, GhWRKY6-like, improves salt tolerance by activating the ABA signalling pathway and scavenging of reactive oxygen species, Physiol Plant, 2018, 162(4):439-454.
154. Sun H, Chen L, Li J, Hu M, Ullah A, He X, Yang X*, Zhang X. The JASMONATE ZIM-domain gene family mediates JA signaling and stress response in cotton. Plant Cell Physiol, 2017, 58(12):2139-2154
155. Ullah A, Sun H, Yang X*, Zhang X. Drought coping strategies in cotton: increased crop per drop. Plant Biotechonol J, 2017, 15(3): 271-284
156. Wang Q, Liu N, Yang X, Tu L, Zhang X*. Small RNA-mediated responses to low- and high-temperature stresses in cotton. Sci Rep, 2016, 6:35558
157. Zhou B, Zhang L, Ullah A, Jin X, Yang X*, Zhang X. Identification of multiple stress responsive genes by sequencing a normalized cDNA library from Sea-Land cotton (Gossypium barbadense L.). PLoS One, 2016, 1(3): e0152927
158. Long L, Gao W, Xu L, Liu M, Luo X, He X, Yang X, Zhang X, Zhu L. GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell Tiss Organ Cult, 2014, 116: 153-162
159. Zhou T, Yang X Y*, Wang L C, Xu J, and Zhang X L. GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis. Plant Mol Biol, 2014, 85: 163-77
160. Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X*. Sugar and auxin signaling pathways respond to high temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol, 2014, 164(3): 1293-1308
161. Liu GZ, Li XL, Jin SX, Liu XY, Zhu LF, Nie YC, Zhang XL*. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE, 2014, 9(1): e86895
162. Wang Y, Jin S, Wang M, Zhu L, Zhang X. Isolation and characterization of a conserved domain in the eremophyte H+-PPase family. PLoS ONE, 2013, 8(7): e70099
163. He LR, Yang XY*, Wang LC, Zhu LF, Zhou T, Deng JW, Zhang XL. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun, 2013, 435: 209-215
164. Xu L, Zahid KR, He LR, Zhang WW, He X, Zhang XL, Yang XY, Zhu LF*. GhCAX3 gene, a novel Ca2+/H+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction. PLoS ONE, 2013, 8(6): e66303
165. Munis M, Tu L, Ziaf K, Tan J, Deng F, Zhang X*. Critical osmotic, ionic and physiological indicators of salinity tolerance in cotton (Gossypium hirsutum L.) for cultivar selection. Pak J Bot, 2010, 42(3): 1685-1694